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ABSTRACT

When evaluating differences between competing precipitation forecasts, formal hypothesis testing is rarely
performed. This may be due to the difficulty in applying common tests given the spatial correlation of and non-
normality of errors. Possible ways around these difficulties are explored here. Two datasets of precipitation
forecasts are evaluated, a set of two competing gridded precipitation forecasts from operational weather prediction
models and sets of competing probabilistic quantitative precipitation forecasts from model output statistics and
from an ensemble of forecasts. For each test, data from each competing forecast are collected into one sample
for each case day to avoid problems with spatial correlation. Next, several possible hypothesis test methods are
evaluated: the paired t test, the nonparametric Wilcoxon signed-rank test, and two resampling tests. The more
involved resampling test methodology is the most appropriate when testing threat scores from nonprobabilistic
forecasts. The simpler paired t test or Wilcoxon test is appropriate to use in testing the skill of probabilistic
forecasts evaluated with the ranked probability score.

1. Introduction

Improving the accuracy of quantitative precipitation
forecasts is a primary goal of the National Centers for
Environmental Prediction and the meteorological re-
search community (Fritsch et al. 1998). Frequently,
whether or not to update an operational model’s physics
is based at least in part on whether precipitation forecast
skill appears to be improved (e.g., Rogers et al. 1995;
Rogers et al. 1996). This may involve the subjective
evaluation of the models during significant precipitation
events and/or comparison of statistical measures of pre-
cipitation forecast quality.

A difference in ‘‘threat score’’ is often provided as
evidence of difference in forecast skill between com-
peting gridded forecasts. These scores are generated
from a contingency table of hits, misses, false alarms,
and correct no forecasts. Currently, the most commonly
cited scores are the equitable threat score, or ETS
[Schaefer (1990); also known as the Gilbert skill score]
and the bias, or BIA. The ETS has the desirable property
that a perfect forecast has skill 1.0, and constant or
random forecasts have skill 0.0. A bias of 1.0 indicates
that events are forecast with the same frequency as they
occur. For probabilistic forecasts, Brier scores (Brier
1950; Wilks 1995), or ranked probability skill scores
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(RPSS; Epstein 1969; Murphy 1971; Daan 1985; Wilks
1995) are commonly used to evaluate forecasts.

When evaluating model differences, the two com-
peting forecast systems should always be compared over
a wide range of weather conditions. If one has an im-
proved ETS or RPSS, this may provide some evidence
that this forecast system is superior. However, assessing
the confidence in such an assessment may be difficult
for a host of reasons. First, comparisons of common
threat scores like the ETS are suspect unless the biases
of competing forecasts are similar; typically, the fore-
cast with the larger bias (the wetter forecast) tends to
have a higher ETS than if the two models had the same
bias (Mason 1989). Second, a user wishing to conduct
a hypothesis test of the statistical significance of skill
score differences may wonder if established hypothesis
tests may be used. Precipitation forecast errors are often
non-normally distributed and have spatially and/or tem-
porally correlated error (Wilks 1997; Livezey and Chen
1983); the effective number of independent samples is
much less than the total number of grid points. Hence,
the tester will be misled if his test methodology treats
individual grid points as independent samples.

Hypothesis testing is typically performed using single
numbers as samples, such as daily threat scores. How-
ever, a final overall threat score is normally generated
from a sum of daily contingency tables, not from an
average of daily threat scores. If the daily contingency
tables are reduced to daily threat scores for the purpose
of hypothesis testing, the data is in a form appropriate
for the use of common hypothesis tests such as the
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paired t test, yet the use of such tests may be inappro-
priate. As discussed more in section 3a, a daily threat
score sample may change dramatically with only small
changes in the partitioning of the counts in the contin-
gency tables. Unfortunately, common hypothesis test
results may be unduly sensitive to these changes. At
high precipitation many case days also may have no
rainfall forecast and/or no rainfall observed above this
threshold in both competing models. In this event, the
sample population of daily threat scores may be dom-
inated by zeros for both forecasts. This may violate the
assumption of normality of errors that are assumed in
hypothesis tests such as the paired t test. Whether such
a test is still appropriate to use is not well understood.

For all these reasons, formal hypothesis testing of
competing forecast models has largely been neglected,
and decisions on whether to make model changes are
often made in ignorance of whether or not the differ-
ences are statistically significant. Guidance is needed
on when simple hypothesis tests are appropriate to use
and when and if more complex or computationally ex-
pensive tests are required.

Modem, computer-based methods of hypothesis test-
ing have been developed over the last few decades to
permit hypothesis testing in situations where it is not
clear whether classic tests will work properly. Methods
based on the resampling technique (Diaconis and Efron
1983; Livezey and Chen 1983; Good 1994; Wilks 1995;
Briggs and Levine 1998) will be demonstrated in this
paper and compared against two more established tech-
niques. The underlying principle or resampling is sim-
ple: use the computer to build a distribution consistent
with one’s null hypothesis by repeated random sampling
from the collected data, and assess the significance of
the test from the ranking of the observed test statistic
in this distribution.

The paper will be organized as follows. Section 2a
describes the nonprobabilistic and probabilistic precip-
itation test data to be used to demonstrate candidate
hypothesis test techniques. Sections 2b and 2c provide
a brief review of threat scores for evaluating nonprob-
abilistic precipitation forecasts and the RPSS for eval-
uating probabilistic quantitative precipitation forecasts
(PQPFs). Section 3a explores the problems and solu-
tions unique to applying hypothesis tests to precipitation
datasets. Sections 3b and 3c describe the candidate hy-
pothesis tests for nonprobabilistic and probabilistic fore-
casts, respectively. Section 4 demonstrates the appli-
cation of these test methods to sample datasets and dis-
cusses the relative merits of each. Section 5 provides
conclusions and recommendations.

Since precipitation forecasts in the United States are
still commonly issued in the English units of inches,
this convention will be used (1.0 in. 5 25.4 mm).

2. Verification measures and data
a. Forecast and verification data

Hypothesis test methodologies will be demonstrated
here for both nonprobabilistic and probabilistic fore-

casts. To demonstrate hypothesis tests for nonprobabi-
listic forecasts, approximately 5 months of gridded fore-
casts and verification data from the Nested Grid Model
(NGM; Hoke et al. 1989; Petersen et al. 1991) and the
Meso Eta 29-km model (Black 1994) will be compared.
A total of 160 days of data were available from October
1997 to March 1998. The 24-h total precipitation ob-
servations were taken from the River Forecast Center
database; each observation was assigned to its nearest
grid box, and the observed gridpoint precipitation rep-
resents the average of all observations assigned to that
box. Grid points where no observations were available
were excluded. Gridded forecasts of rainfall were re-
mapped and integrated to a common 80-km grid in a
method that conserves total water (Mesinger 1996; M.
Baldwin 1998, personal communication). Generally,
grid points with valid observations were limited to the
conterminous United States, with more valid grid points
in the east than in the west. The hypothesis test meth-
odologies will be demonstrated at the 0.01-, 0.10-, 0.25-,
0.50-, 0.75-, 1.00-, 1.50-, and 2.00-in. thresholds.

For probabilistic precipitation forecasts, model output
statistics (MOS; Carter et al. 1989) PQPFs, and pro-
totype Eta/Regional Spectral Model (RSM) ensemble
categorical PQPFs will be evaluated using the same 13
case days and verification data from 1995–96 described
in Hamill and Colucci (1998). On each case day, the
verification data (12-hourly station precipitation totals)
and station forecasts were jointly available at approxi-
mately 300 sites. Here, we will focus on the comparisons
of categorical PQPFs generated 1) by MOS and 2) by
fitting a gamma distribution to the ensemble mean and
subsequent categorization of probabilities, as described
in Hamill and Colucci (1998). This latter forecast meth-
od will be denoted G(Eta). Forecast probabilities and
observations were assigned to the MOS precipitation
categories. These categories are 0 # V , 0.01 in., 0.01
# V , 0.10, 0.10 # V , 0.25, 0.25 # V , 0.5, 0.5
# V , 1.0, 1.0 # V , 2.0, and V $ 2.0, where V is
the verification amount in inches.

b. Equitable threat score and bias

These scores are useful for evaluating nonprobabilis-
tic, gridded precipitation forecasts. They are generated
as follows. For a given precipitation threshold, forecasts
are partitioned into a contingency table of four mutually
exclusive and collectively exhaustive events: (a) the
number of locations with both forecast and verification
greater or equal than the threshold, that is, ‘‘hits;’’ (b)
number of locations with forecast at or above the thresh-
old and verification below, or ‘‘false alarms;’’ (c) num-
ber of locations with forecast below and verification at
or above the threshold, or ‘‘misses;’’ and (d) forecast
and verification both below the threshold. This is illus-
trated in Table 1. The ETS is defined by
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TABLE 1. Contingency table of possible events.

Observed

Yes No

Forecast Yes
No

a
c

b
d

a 2 arETS 5 , (1)
a 1 b 1 c 2 ar

where ar is the expected number of correct forecasts
above the threshold in a random forecast, where forecast
yeses/nos are independent of observation yeses/nos, de-
fined by

(a 1 b)(a 1 c)
a 5 . (2)r a 1 b 1 c 1 d

The bias is the ratio of the number of yes forecasts issued
divided by the number of yes observed:

a 1 b
BIA 5 . (3)

a 1 c

c. Ranked probability skill score

The ranked probability score (RPS; Epstein 1969;
Murphy 1971) is a single-number statistic that indicates
the quality of a set of probabilistic forecasts for a set
of ordered categories. Using a forecast distribution vec-
tor of precipitation probabilities y with k categories, a
cumulative distribution vector Y is defined with com-
ponents

m

Y 5 y , m 5 1, . . . , k. (4)Om j
j51

Similarly, from the vector of the observations o, a cu-
mulative distribution vector O is also generated:

m

O 5 o , m 5 1, . . . , k, (5)Om j
j51

where oj 5 1 if precipitation occurred in the jth category
and is zero otherwise. The RPS is the squared difference
between the forecast’s cumulative distribution vector
and the observed cumulative distribution vector,

k

2RPS 5 (Y 2 O ) . (6)O m m
m51

The RPSS measures the fractional improvement of the
average of rank probability score over all forecasts rel-
ative to the average score of a reference forecast, RPS R

(Wilks 1995):

RPS
RPSS 5 1 2 . (7)

RPSR

The overbar denotes an average over all forecasts. The

reference forecast is commonly derived from climatol-
ogy, a persistence forecast, or an established forecast
system.

3. Hypothesis test methodologies

a. Test design principles

We first outline some of the issues that must be ad-
dressed in designing an appropriate hypothesis test for
precipitation forecast data.

1) SPATIAL CORRELATION OF ERROR

Because of spatial correlation of forecast error, in-
dividual gridbox elements cannot be considered inde-
pendent samples. If the forecast missed a rain event for
Washington, D.C., it also was likely that nearby Bal-
timore, Maryland, missed the rain event as well. Hence,
a single daily sample statistic is calculated from a sum
or average over all model grid points where valid ob-
servations were taken. Subdividing a daily gridded fore-
cast into even slightly smaller units resulted in corre-
lated error among the subdivisions, violating the as-
sumption of independence of samples. To illustrate this,
for a set of gridded model forecasts and observations
over the conterminous United States for a 160-day pe-
riod (section 2a), the verification region was subdivided
into four smaller blocks with approximately equal num-
bers of grid points with observations. The Spearman
rank correlation of ETS was often significantly greater
than zero among the subblocks, as indicated in Table 2.

2) PAIRING OF SAMPLES

Because the performance of both competing forecast
schemes on a given day are related to the synoptic con-
ditions on that day, the hypothesis test should treat the
forecast data as paired. On days where the weather is
dominated by high pressure, both forecast models are
likely to correctly forecast large areas of no precipita-
tion, but on stormy days both forecasts are likely to
exhibit generally higher than normal error. Pairing of
the data reduces the variance and results in a more pow-
erful hypothesis test.

3) SERIAL CORRELATION

Whether serial (temporal) correlation of error need
be addressed was not immediately obvious. If today’s
forecast was too rainy, can we expect tomorrow’s fore-
cast to be too rainy as well? To examine this, ETS and
BIA scores were calculated each day and each precip-
itation threshold from a set of NGM and Meso Eta 48-h
forecasts during December 1997, a sequence of 31 con-
tinuous days where forecast and verification data was
available. A lag-one Spearman rank correlation analysis
was performed to see if there was a statistically signif-
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TABLE 2. Spearman rank correlation of daily ETS among subblocks
of model forecast domain using Meso Eta data from a 160-day period
in 1997–98. Subdomains are northeast (NE), northwest (NW), south-
east (SE), and southwest (SW) United States. Two-sided p values of
the significance of the deviation from zero are provided as well.

Threshold
(in.) Block 1 Block 2

Spearman
rank
corr. p value

0.01 SW
SW
SW
NW
NW
SE

NW
SE
NE
SE
NE
NE

0.26
0.23

20.07
20.02

0.02
0.29

0.001
0.003
0.360
0.783
0.770

,0.001

0.10 SW
SW

NW
SE

0.29
0.24

,0.001
0.002

SW
NW
NW
SE

NE
SE
NE
NE

20.01
20.03
20.02

0.25

0.869
0.670
0.765
0.001

0.25 SW
SW
SW
NW
NW
SE

NW
SE
NE
SE
NE
NE

0.24
0.29
0.80
0.81
0.04
0.22

0.001
,0.001
,0.001
,0.001

0.591
0.004

0.50 SW
SW
SW
NW
NW
SE

NW
SE
NE
SE
NE
NE

0.32
0.36
0.45
0.18
0.31
0.58

,0.001
,0.001
,0.001

0.022
,0.001
,0.001

1.00 SW
SW
SW
NW
NW
SE

NW
SE
NE
SE
NE
NE

0.63
0.42
0.99
0.33
0.94
0.89

,0.001
,0.001
,0.001
,0.001
,0.001
,0.001

TABLE 3. Two-sided significance (p value) of the deviation from
zero of lag-1 rank correlations of ETS and BIA from 48-h Meso Eta
and NGM forecasts using the data described in section 2c.

Threshold
(in.)

Meso Eta
48-h ETS

Meso Eta
48-h BIA

NGM 48-h
ETS

NGM 48-h
BIA

0.01
0.10
0.25
0.50
0.75
1.00
1.50
2.00

0.86
0.85
0.65
0.65
0.43
0.75
0.24
0.56

0.69
0.68
0.61
0.32
0.88
0.17
0.34
0.29

0.63
0.58
0.42
0.62
0.73
0.36
0.69
0.56

0.40
0.91
0.33
0.14
0.15
0.74
0.77
0.56

icant correlation. A mixture of both positive and neg-
ative correlations was observed. Table 3 reports the ob-
served two-sided significance of the deviation of the
rank correlation from zero. As shown in the table, there
is no evidence to indicate precipitation forecasts a day
apart exhibit serial correlation of threat score. Hence,
we assume each case day may effectively be treated as
independent from prior and subsequent days. Whether
this holds for forecasts 12 h apart is not known.

4) DIFFERING MODEL BIASES

As noted earlier, comparisons of the ETS from com-
peting forecasts may be misleading if their biases are
dissimilar (Mason 1989). For example, given two fore-
cast systems with similar ETS and BIA, the ETS of one
forecast system may be inflated by adding a constant
precipitation amount if doing so tends to preferentially
increase the number of hits. This deficiency is illustrated
in Figs. 1a–c. Figure 1a shows a hypothetical forecast
and observed precipitation pattern. Normally, to cal-
culate the ETS at a threshold, say 0.75 in., the forecast

areas above and below the threshold are calculated using
the 0.75-in. forecast contour. However, if 0.10 in. is
added to the forecast at every grid point, then the orig-
inal 0.65-in. forecast contour may now be considered
the forecast threshold. Proceeding in this manner, Figs.
1b,c illustrate the ETS and BIA over the range of choices
of forecast threshold while holding the verification
threshold fixed at 0.75 in. As shown, in this instance
the ETS is maximized if the 0.35-in. contour is chosen
as the threshold. That is, a forecast with 0.4 in. arbi-
trarily added to the forecast at all grid points would
score much higher in ETS than forecasts with none or
less of this ‘‘gaming’’ of the precipitation field. Hence,
when the ETS of competing forecasts are evaluated, the
forecast with the higher BIA is likely to have a higher
ETS than if the forecast were adjusted to have the same
BIA as its competitor. This also complicates application
of the hypothesis test, for a higher ETS by one model
may not be unambiguously attributed to higher skill if
model biases differ. Even though forecast models are
certainly not designed with the gaming of ETS in mind,
if two competing models have different biases, this ef-
fect should be considered. Hypothesis tests will be dem-
onstrated in section 4 with and without a correction for
this effect.

5) SENSITIVITY TO SMALL CHANGES IN

CONTINGENCY TABLE POPULATION

For rare events such as heavy precipitation, only one
element of the forecast table d in Table 1, the ‘‘correct
no’’ element, may be highly populated. Because the
other elements are sparsely populated, a small change
in the population of the elements can cause a large
change in daily threat scores. To illustrate this, consider
a scenario of two subsequent days, one dry and the next
one moist. Perhaps a contingency table (a, b, c, d) over
1000 grid points on the first day was populated with (0,
2, 1, 997) for the NGM forecast and (0, 1, 2, 997) for
the Meso Eta. The respective biases for the two models
are (0 1 2)/(0 1 1) 5 2 and (0 1 1)/(0 1 2) 5 0.5.
On the next day, the contingency table elements are
much more evenly populated, say (50, 80, 80, 790) and
(60, 70, 90, 880), yielding biases of (50 1 80)/(50 1
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FIG. 1. Illustration of how the equitable threat score may be inflated
for forecasts with higher bias. (a) Synthetic verification (dashed) and
forecast (solid) of precipitation. (b) ETS as a function of the forecast

←

used for the threshold in the case where the verification threshold is
0.75 in. (c) Bias as a function of the forecast threshold.

80) 5 1.0 and (60 1 70)/(60 1 90) 5 0.867, respec-
tively. The bias difference between models on the first
day is 2.0 2 0.5 5 1.5, but this sample difference is
very sensitive to a redistribution of a single count among
the contingency table elements. Conversely, changing
the population of contingency tables in the same way
on the second day will not have nearly as much effect.
Ideally, the hypothesis test should be designed to not
be sensitive to these small changes.

b. Test methodologies for precipitation threat scores

We first outline the most complex methodology, a
technique based on resampling. Accessible introduc-
tions to hypothesis testing via resampling are provided
by Diaconis and Efron (1983) and Wilks (1995). More
detailed information on its proper use can be found in
Hall and Wilson (1991), Efron and Tabshirani (1993),
and Good (1994). The methodology properly addresses
the test design problems discussed in section 3a.

The null hypotheses for the resampling tests are that
the differences in ETS and BIA between the two com-
peting forecasts M1 and M2 are zero, computed from
a sum of daily contingency table samples over all case
days; that is,

H : ETS 2 ETS 5 0.0,0 M1 M2

BIA 2 BIA 5 0.0, (8)M1 M2

and the alternative hypotheses

H : ETS 2 ETS ± 0.0,A M1 M2

BIA 2 BIA ± 0.0. (9)M1 M2

Assume a two-sided test with significant level a 5 0.05.
Next we form a test statistic and a resampled distribution
consistent with the null hypothesis. Each daily sample
from each model is a vector of the contingency table
elements:

x 5 (a, b, c, d) , i 5 1, 2, andi, j i, j

j 5 1, . . . , n, (10)

where n is the number of case days. Here i is the in-
dicator of the forecast model, and j is the number of
the case day. The test statistic

̂ ̂ ̂ ̂ETS 2 ETS or BIA 2 BIA1 2 1 2M1 M2 M1 M2

is calculated using (1)–(3) after summing contingency
table elements for each model over all case days:

n̂(a, b, c, d) 5 x , (11)OM1 1,k
k51

and
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n̂(a, b, c, d) 5 x . (12)OM2 2,k
k51

Resampled test statistics consistent with the null hy-
pothesis are generated after randomly choosing either
one or the other model on each day and summing con-
tingency table elements. Let Ij be an random indicator
variable equally likely to take on the value 1 or 2, with
j 5 1, . . . , n. To calculate the resampled test statistic,
generate the n random samples of I and form a resam-
pled sum of the shuffled vectors of contingency table
elements over all case days:

n̂(a, b, c, d)* 5 x . (13)O1 I ,kk
k51

Form another sum of contingency table elements using
the model data not selected for the first sum in (13):

n̂(a, b, c, d)* 5 x . (14)O2 (32I ),kk
k51

From and the resampled test̂ ̂(a, b, c, d)* (a, b, c, d)*1 2

statistics

̂ ̂ ̂ ̂ETS* 2 ETS* or BIA* 2 BIA*1 2 1 21 2 1 2

are then calculated using (1)–(3). This process is re-
peated many times (here, 1000) to build a null distri-
bution.

The hypothesis of difference in ETS is finally tested
by determining the location of 2 in thê ̂(ETS ETS )M1 M2

resampled distribution of and simi-̂ ̂(ETS* 2 ETS*) ,1 2

larly for bias. Formally, using the resampled distribution
we compute numbers and such that̂ ̂t tL U

â ̂ ̂Pr* 3 ETS* 2 ETS* , t 4 5 , and1 21 2 L 2

â ̂ ̂Pr* 3 ETS* 2 ETS* , t 4 5 1 2 , (15)1 21 2 U 2

where Pr* represents probabilities calculated from this
distribution. Then H0 is rejected if̂ ̂ ̂ ̂̂ ̂(ETS 2 ETS ) , t or (ETS 2 ETS ) . t .M1 M2 L M1 M2 U

As a possible alternative to the resampling method-
ology, the paired t test or Wilcoxon signed-rank test
may be used. Unlike the resampling test, the paired t
test requires a vector of the daily differences in ETS or
BIA and not contingency table elements. Specifically,
given n case days, there are n sample differences in the
scores between the competing models. The average
threat scores ETS and BIA and their sample standard
deviations sETS and sBIA are calculated from these daily
differences. The paired t test assumes ETS/(sETS/ n)Ï
and BIA/(sBIA/ n) are distributed as t variables with nÏ
2 1 degrees of freedom, and the location of the sample
statistic is compared against this distribution. As men-
tioned previously, test results may be unduly sensitive

to small changes in the population of contingency table
elements on dry days, and the test statistic is different
from the method in which the ETS is itself calculated;
the average of daily ETS scores is not necessarily equal
to the ETS generated from a sum of daily contingency
table elements.

The nonparametric Wilcoxon signed-rank test (Wilks
1985) is also considered here; see Sprent (1989) for a
more lengthy discussion of the application of this test
when paired sample differences are zero or tied. In this
test, given the vector q of n daily differences between
model threat scores, we form a new vector, z, the sorted
absolute values of the elements of q. A vector of ranks
of z is generated, indicating the ranking of each element
from lowest to highest. Denote this array t. If elements
in z are of equal value, each corresponding element in
t is assigned the same average rank. For example, if q
5 [21, 1, 0, 0, 3, 24], then z 5 [0, 0, 1, 1, 3, 4] and
t 5 [1.5, 1.5, 3.5, 3.5, 5, 6]. Now let d0 equal the number
of daily differences in q equal to zero and denote di as
the number of ties in nonsigned ranks other than zero,
i 5 1, 2, . . . , r, where there are r sets of different ties
in the vector of sorted ranks. In our example, d0 5 2,
r 5 1, and d1 5 2. The ranks in t are then ‘‘signed’’
based on whether the original difference was greater
than, equal to, or less than zero; a 1 1, 0, and 21 are
multiplied by the ranks, respectively. Denote u as the
signed ranks of t; here u 5 [0, 0, 23.5, 3.5, 5, 26].
The positive signed ranks U1 are then summed (58.5
here), and under the null hypothesis the distribution of
positive ranks is approximately Gaussian, with mean

n(n 1 1) 2 d (d 1 1)0 0m 5 . (16)
4

The standard deviation under the null hypothesis is

n(n 1 1)(2n 1 1) 2 d (d 1 1)(2d 1 1)0 0 0s 5 [ 4

r

3 1/2(d 2 d )O i i
i512 . (17)]48

The location of the sum of the ranks of positive differ-
ences is compared to this distribution; that is, the prob-
ability of exceeding the Z score (U1 2 m)/s is calcu-
lated. This method, too, operates on daily threat scores
and thus may have the same drawbacks discussed with
the paired t test.

To provide a more direct comparison against the
paired t test and Wilcoxon test, another resampling test
was designed following the same basic principles of
permuting the choice of models on each case day for-
mulated in Eqs. (10)–(15). However, for this resampling
test, a daily ETS is calculated for each model from the
contingency table elements and the resampling method
then permutes the daily ETS samples rather than the
vector of contingency table elements. The sample sta-
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TABLE 4. Illustration of how different daily statistics may be used
as input to the hypothesis tests. The paired t test may use the dif-
ference in S RPS between columns 2 and 3, which emphasizes case
days 4 and 10, with high precipitation. The test may also be performed
on the skill score difference (relative to 0.0 for MOS), which will
emphasize case day 8, with low precipitation. The former is preferred
since it is consistent with the method by which an RPSS is calculated
in Eq. (7). Skill score from total 5 20.023. Average of daily skill
scores 5 20.078.

Case
day S RPSG(Eta) S RPSMOS Sample size Skill score

1
2
3
4
5
6
7
8
9

10
11
12
13
Total

69.66
64.09
63.75

116.75
43.34
43.30
62.56
28.12
58.17
92.66
20.60

103.80
46.37

813.21

65.13
77.61
62.42
91.33
35.82
36.40
63.93
18.65
57.30

112.77
18.76

111.16
43.33

794.61

324
331
261
299
318
304
295
290
299
288
297
301
293

3900

20.069
0.174

20.021
20.278
20.210
20.189

0.021
20.507
20.015

0.178
20.097

0.065
20.070

tistic is the average of daily differences in ETS between
models, which is compared to a resampled null distri-
bution of daily ETS differences. This test may be ex-
pected to exhibit the same drawbacks as the paired t test
and Wilcoxon test.

c. Methodology for RPSS

The resampling methodology for RPSS is first de-
scribed. As with the threat scores, we again make the
conservative assumption that the RPSSs may be cor-
related among verification locations on the same day,
so all locations on a given day are treated as a grouped
entity. Hypothesis testing here will be performed on the
RPS summed over all forecast locations rather than us-
ing the daily average RPSS. As with threat scores, this
is done so the sample statistic is consistent with the
method in which the overall RPSS is calculated (Table
4). The null hypothesis shows no difference in average
RPS between competing models, generated from a sum
over all observation locations on all days:

H : RPS 2 RPS 5 0 (18)0 M1 M2

and the alternative hypothesis

H : RPS 2 RPS ± 0. (19)A M1 M2

Let us assume that an RPS has been calculated for each
model and at each observation location on each case
day. The resampling test is most computationally effi-
cient if the RPS scores at individual locations within
each case day are summed and resampling permutes the
daily sums. Assume there are n total verification loca-
tions over the m case days and nq verification locations
on the qth case day. Hence

m

n 5 n . (20)O q
q51

Further, assume the observation locations are numbered,
so the first location on the second case day is numbered
n1 1 1, the first on the third day is numbered n1 1 n2

1 1, and so on. Define n0 5 0. Let individual RPS
scores be indexed by their model i, i 5 1, 2, and their
observation number k, where k 5 1, . . . , n. Hence,
RPSi,k denotes kth score for the ith model. Also, let Ri,j

be the sum of RPSs of model i on the jth case day,
where i 5 1, 2 and j 5 1, . . . , m, where m is the number
of case days. The sum of RPS for model i on the jth
case day is thus

j

nO p
p51

R 5 RPS (21)i , j i ,k.O
j21

k511 nO q
q50

For example, R1,1 sums model 1 RPS scores from 1 to
n1, and R1,2 from n1 1 1 to n1 1 n2, and so on. The
sample average RPSs for models 1 and 2 are then

m

RO 1,k
k51R̂PS 5 (22)M1 m

nO k
k51

and
m

RO 2,k
k51R̂PS 5 , (23)M2 m

nO k
k51

and our test statistic is 2̂ ̂(RPS RPS ).M2 M1

We now generate a resampled null distribution. As
with threat scores, we generate a random indicator var-
iable I j , j 5 1, . . . , m, taking on a value of 1 or 2 with
equal probability. The indicator variable is used to ran-
domly select either one or the other model on each case
day to develop a resampled sum. Specifically, a resam-
pled statistic ̂ ̂RPS* 2 RPS*1 21 2

is generated using
m

RO I ,kk
k51R̂PS* 5 (24)1 m

nO k
k51

and
m

RO (32I ),kk
k51R̂PS* 5 . (25)2 m

nO k
k51
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FIG. 2. (a) ETS and (b) BIA for a set of 160 forecasts of 24-h
accumulated precipitation for Meso Eta and NGM forecasts. Over-
plotted error bars used to indicate 2.5th and 97.5th percentiles of
resampled distribution, referenced to the Meso Eta forecast.

As before, the hypothesis is tested by calculating andt̂L

such thatt̂U

â ̂ ̂Pr*3 RPS* 2 RPS* , t 4 5 and1 22 1 L 2

â ̂ ̂Pr*3 RPS* 2 RPS* , t 4 5 1 2 , (26)1 22 1 U 2

and H0 is rejected if̂ ̂ ̂ ̂̂ ̂RPS 2 RPS , t or RPS 2 RPS . t .1 2 1 2M2 M1 L M2 M1 U

For comparison, the paired t test and Wilcoxon
signed-rank test were again performed. The input to the
paired t test and Wilcoxon test was a vector of differ-
ences in total RPS on each case day, that is, R1, j 2 R2, j

in Eq. (21).

4. Results

a. Results for nonprobabilistic forecasts

We demonstrate first the resampling methodology for
ETS and BIA from Eqs. (10)–(15) applied to the data
from section 2a. Figure 2 shows the comparative ETS
and BIA of NGM and Meso Eta forecasts as well as a
confidence interval referenced to the Meso Eta forecast.
That is, for the ETS, the distance of the error bars from
the Meso Eta forecast is the t such that

â ̂Pr* 3 ETS* 2 ETS* . t̂ 4 5 , and1 21 2 2

â ̂Pr* 3 ETS* 2 ETS* . t̂ 4 5 1 2 .1 21 2 2

Forecast differences outside the interval may be con-
sidered statistically significant for this chosen a. As
shown, both the BIA and ETS of the Meso Eta are
significantly different. But to what extent is the higher
ETS of the Meso Eta a spurious effect of the difference
in biases? As a proxy for correcting the model physics
of one or the other forecast, we achieve similar biases
here by adjusting the forecast precipitation thresholds
of the NGM so that its BIA is similar to the Meso Eta
BIA. For example, the NGM and the Meso Eta have
similar biases at the 0.10-in. threshold if 0.09 in. re-
places the 0.10-in. threshold for the NGM forecasts.
In this manner, the NGM forecast threshold was ad-
justed at each observation threshold. The ETS was re-
calculated, and the hypothesis test methodology was
reapplied. Results are shown in Fig. 3. As shown, the
difference in ETS between the two forecast models is
smaller but still significant after accounting for bias
differences; the Meso Eta appears to be unambiguously
better at precipitation forecasting than the NGM.

The resampling test demonstrated above is more com-
putationally expensive and will take some time to code.
Is a paired t test or Wilcoxon signed-rank test a rea-
sonable substitute? Table 5 presents the p values of the

four tests at the various precipitation thresholds applied
to the differences between the Meso Eta and bias-cor-
rected NGM over the n 5 160 case days. At lower
precipitation thresholds all tests agree that differences
in ETS are significant while differences in BIA are not.
At higher thresholds, however, there are some notable
differences among the hypothesis tests. For example, at
2.0 in., the resampling test for ETS yields a p value of
;0.1, while the Wilcoxon and paired t tests still have
p values near zero. For BIA, the Wilcoxon signed-rank
test indicates a statistically significant difference in BIA
at the 1.50-in. threshold even though the NGM’s BIA
was explicitly constructed to be the same as the Meso
Eta’s BIA (Fig. 3b). What may be affecting the test
results at the higher thresholds? As previously dis-
cussed, only the resampling method in Eqs. (10)–(15)
is designed to gracefully handle dry days, when there
may be strong sensitivity to small changes in the con-
tingency table population or ties among daily threat
scores. In this resampling technique, the permutation of
forecasts on the dry days will have little influence com-
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FIG. 3. As in Figs. 2a,b but after the NGM forecast thresholds were
corrected to ensure a bias consistent with the Meso Eta bias.

TABLE 5. The p values of hypothesis tests for differences in ETS and BIA between Meso Eta and bias-corrected NGM forecasts at
various precipitation thresholds.

Threat
score

Threshold
(in.)

Resampling
p value

Paired t test
p value

Wilcoxon S-R
p value

Resampling
on daily threat
score p value

ETS 0.01
0.10
0.25
0.50
0.75
1.00
1.50
2.00

,0.00001
,0.00001
,0.00001
,0.00001
,0.00001
,0.00001

0.02002
0.10410

,0.00001
,0.00001
,0.00001
,0.00001
,0.00001
,0.00001
,0.00001

0.00018

,0.00001
,0.00001
,0.00001
,0.00001
,0.00001

0.00065
0.00001

,0.00001

,0.00001
,0.00001
,0.00001
,0.00001
,0.00001
,0.00001
,0.00001
,0.00001

BIA 0.01
0.10
0.25
0.50
0.75
1.00
1.50
2.00

0.240
0.331
0.360
0.490
0.492
0.452
0.365
0.423

0.292
0.387
0.399
0.494
0.498
0.485
0.415
0.407

0.124
0.133
0.181
0.387
0.484
0.254
0.004
0.029

0.494
0.396
0.045
0.117
0.092
0.496
0.272
0.197

pared to the permutation on the wet days. This is an
important property; as shown in Fig. 4, there are many
days where no events over the threshold were forecast
to occur or verified, resulting in a tie in the daily threat
score.

To determine more formally whether the apparent
statistical significance of the t test and Wilcoxon test
of ETS might be trusted, curves of the power of the
tests were generated. The power measures the ‘‘type
II’’ error of a test, that is, an incorrect acceptance of
the null hypothesis when the alternative hypothesis is
correct. Power is defined as 1 minus the probability of
a type II error. Ideally, the power curve will be at a,
the probability of a type I error (incorrect acceptance
of alternative hypothesis) when the null hypothesis is
true and grow quickly to 1.0 as the sample populations
begin to differ. Here, power curves are generated by
repeatedly conducting hypothesis tests using randomly
generated contingency tables. For each case day, a con-
tingency table (a, b, c, d) was randomly selected from
one of the 320 Meso Eta or NGM forecasts. Next, a
hypothetical perfect contingency table (a*, b*, c*, d*)
was created on each day by assuming that all the fore-
cast false alarms were hits, and all the misses were
nonevents, that is, a* 5 a 1 b, b* 5 0, c* 5 0, d*
5 c 1 d, and a 1 b 1 c 1 d 5 1. Given a desired
fractional improvement x, where x 5 0 is no improve-
ment and x 5 1 is a perfect forecast, the expected value
of an improved contingency table (a r , b r , c r , d r)x is
set, where

(a , b , c , d ) 5 x(a, b, c, d)r r r r x

1 (1 2 x)(a*, b*, c*, d*). (27)

Actual contingency tables were then randomly popu-
lated with 10 000 counts to have expectation (a, b, c,
d)*10 000 and (a r, b r, c r, d r) 10 000. The hypothesis*x
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FIG. 4. Fraction of the case days where the domain-average Meso Eta ETS was greater than,
equal to, or less than the NGM ETS: (a) 0.01-, (b) 0.10-, (c) 0.25-, (d) 0.50-, (e) 0.75-, (f) 1.00-,
(g) 1.50-, and (h) 2.00-in. threshold.

test methodologies were applied, the acceptances/rejec-
tions of the null hypothesis tallied, and the process re-
peated 1000 times. From this, curves of the power were
generated. Figures 5–7 show power curves for ETS
evaluated at the 0.01-, 1.0-, and 2.0-in. thresholds. As
shown, at 0.01 in. all tests perform similarly. As the
precipitation threshold is increased and the event be-
comes rarer, the Wilcoxon test appears alternately more
(1.0 in.) or less powerful (2.0 in.) than the other tests,
especially for small sample sizes. The resampling test
operating on the daily ETS is typically a powerful test,
while the resampling test operating on contingency table
elements is the least powerful. This illustrates that the
apparent lack of power in this resampling test is an

appropriate consequence of the designed insensitivity to
small fluctuations in daily contingency table popula-
tions; resampling on daily threat scores produces results
similar to the other two tests. Further, this hypothesis
test methodology is the only one where the sample sta-
tistic is consistent with the way in which threat scores
are calculated. Hence, it is the hypothesis test meth-
odology of choice for threat scores.

b. Comparisons for probabilistic quantitative
precipitation forecasts

Consider first how the resampling hypothesis test in
(18)–(26) performed on the actual PQPFs. No statistical
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FIG. 5. Power curves for the resampling test, the paired t test, and
the Wilcoxon signed-rank test on ETS for 0.01-in. threshold and a
two-sided test with a 5 0.05: (a) n 5 20, (b) n 5 50, (c) n 5 100.

FIG. 6. As in Fig. 5 but for threshold 5 1.0 in.
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FIG. 7. As in Fig. 5 but for threshold 5 2.0 in.

TABLE 6. The p values for hypothesis tests on difference in RPS
between MOS and G (Eta) forecasts.

Lead time
(h) Resampling t test

Wilcoxon
signed-rank

24
36
48

0.343
0.306
0.375

0.325
0.299
0.344

0.219
0.139
0.086

significance was noted for differences in RPSS between
MOS and G(Eta) (Table 6). As shown, the location of
the actual test statistic in the resampled distribution in-
dicated no statistical significance for a 5 0.05. This
indicates that either the model forecasts are truly indis-
tinguishable with respect to RPSS or that at least testing
must be performed on a larger sample. Here, the Wil-
coxon or paired t tests are acceptable surrogates for the
more complex resampling test (power curves not
shown), but to be consistent with the way the RPSS is
calculated, tests must be performed using the difference
in daily sums of RPS rather than differences in daily
RPSSs (Table 4).

5. Conclusions

The use of hypothesis tests to evaluate the signifi-
cance of differences between competing precipitation
forecasts is explored here. These tests should supple-
ment but not replace the commonsense evaluation of
forecast quality. Careful subjective evaluation and ro-
bust testing over a range of weather conditions will
always be prudent, regardless of the significance of hy-
pothesis tests.

Nonetheless, competing precipitation forecasts can be
tested to evaluate whether improvements are statistically
significant. A simple paired t test or Wilcoxon signed-
rank test provides an estimate, but when evaluating
threat scores these tests may be unduly sensitive to small
changes in contingency table elements on dry days and
are thus not recommended. The resampling technique
operating on a vector of daily contingency table ele-
ments is preferred, since the methodology is insensitive
to small changes in the contingency table population
and is consistent with the way threat score statistics are
calculated. For testing differences in RPSS, a simple
Wilcoxon signed-rank test or t test is a worthy substitute
for a resampling test, but the user should design the test
to operate on the daily differences in sums of RPS rather
than the daily differences in RPSS.

It is hoped that hypothesis testing will become more
commonplace when evaluating the significance of mod-
el changes.
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